Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Scand J Med Sci Sports ; 33(9): 1584-1597, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243491

RESUMO

INTRODUCTION: Several direct-to-consumer (DTC) genetic testing companies have emerged that claim to be able to test for susceptibility for musculoskeletal injuries. Although there are several publications on the emergence of this industry, none have critically evaluated the evidence for the use of genetic polymorphisms in commercial tests. The aim of this review was to identify, where possible, the polymorphisms and to evaluate the current scientific evidence for their inclusion. RESULTS: The most common polymorphisms included COL1A1 rs1800012, COL5A1 rs12722, and GDF5 rs143383. The current evidence suggests that it is premature or even not viable to include these three polymorphisms as markers of injury risk. A unique set of injury-specific polymorphisms, which do not include COL1A1, COL5A1, or GDF5, identified from genome-wide association studies (GWAS) is used by one company in their tests for 13 sports injuries. However, of the 39 reviewed polymorphisms, 22 effective alleles are rare and absent in African, American, and/or Asian populations. Even when informative in all populations, the sensitivity of many of the genetic markers was low and/or has not been independently validated in follow-up studies. CONCLUSIONS: The current evidence suggests it is premature to include any of the reviewed polymorphisms identified by GWAS or candidate gene approaches in commercial genetic tests. The association of MMP7 rs1937810 with Achilles tendon injuries, and SAP30BP rs820218 and GLCCI1 rs4725069 with rotator cuff injuries does warrant further investigation. Based on current evidence, it remains premature to market any commercial genetic test to determine susceptibility to musculoskeletal injuries.


Assuntos
Lesões do Manguito Rotador , Traumatismos dos Tendões , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Colágeno , Predisposição Genética para Doença , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
J Sports Sci ; 41(1): 56-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37012221

RESUMO

Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study's definition of "elite"). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance.


Assuntos
Resistência Física , Corrida , Masculino , Humanos , Feminino , Resistência Física/genética , Polimorfismo Genético , Frequência do Gene , Genótipo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
3.
J Sports Med Phys Fitness ; 63(6): 756-764, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884122

RESUMO

BACKGROUND: The 56km Two Oceans ultra-marathon (TOM), in Cape Town, South Africa, was cancelled in 2020 and 2021 because of the COVID-19 pandemic. Since most other road running events were also cancelled during this period, we hypothesized that most athletes who entered TOM 2022 would be inadequately trained, which would negatively affect performance. However, many world records were broken post-lockdown, and therefore the performance, specifically of the elite athletes, during TOM might actually improve. The aim of this analysis was to evaluate the impact of the COVID-19 pandemic on performance in TOM 2022 compared to the 2018 event. METHODS: Performance data during the two events, as well as the 2021 Cape Town marathon, was extracted from public databases. RESULTS: Fewer athletes entered TOM 2022 (N.=4741) compared to TOM 2018 (N.=11,702), of which more were male (2022: 74.5% vs. 2018: 70.4%, P<0.05) and in the 40+ age-group categories. Compared to 2018 (11.3%), fewer athletes did not finish TOM 2022 (3.1%). Only 10.2% of the finishers completed the 2022 race during the last 15-minutes prior to the cut-off, compared to 18.3% in 2018. There were no differences in the average 2022 finishing time of the subset of 290 athletes whose times were compared to their 2018 performance. There was no difference in the TOM 2022 performance of athletes who had completed the 2021 Cape Town marathon, 6-months earlier, when compared to those who had not entered the marathon. CONCLUSIONS: Although there were fewer entrants, most athletes who entered knew that they were adequately trained to complete TOM 2022, with the top runners breaking course records. There was therefore no impact of the pandemic on performance during TOM 2022.


Assuntos
COVID-19 , Corrida de Maratona , Humanos , Masculino , Feminino , Pandemias , COVID-19/epidemiologia , África do Sul/epidemiologia , Controle de Doenças Transmissíveis , Atletas
4.
Eur J Sport Sci ; 23(10): 2098-2108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36680346

RESUMO

We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group. Several significant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 and ITGB2:rs2230528) and (ITGB2:rs2230528 and FGF9:rs2297429). This study substantiates the efficiency of using a prior knowledge-driven in silico approach to identify candidate genes linked to tendon and ACL injuries. Our biomedical knowledge graph identified and, with further testing, highlighted novel associations of the ITGB2 gene which has not been explored in a genetic case control association study, with ACL rupture risk. We thus recommend a multistep approach including bioinformatics in conjunction with next generation sequencing technology to improve the discovery potential of genomics technologies in musculoskeletal soft tissue injuries.HighlightsA biomedical knowledge graph was modelled for musculoskeletal soft tissue injuries to efficiently identify candidate genes for genetic susceptibility analyses.The biomedical knowledge graph and sequencing data identified potential biologically relevant variants to explore susceptibility to common tendon and ligament injuries. Specifically genetic variants within the ITGB2 and FGF9 genes were associated with ACL risk.Novel allele combinations (HSPG2-ITGB2 and ITGB2-FGF9) showcase the potential effect of ITGB2 in influencing risk of ACL rupture.


Assuntos
Tendão do Calcâneo , Lesões do Ligamento Cruzado Anterior , Tendinopatia , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Ligamento Cruzado Anterior , Predisposição Genética para Doença , Estudos de Casos e Controles , Tendinopatia/genética , Loci Gênicos , Ruptura/genética , Fator 9 de Crescimento de Fibroblastos/genética
5.
Eur J Sport Sci ; 23(5): 726-735, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293840

RESUMO

There is growing evidence of genetic contributions to tendon and ligament pathologies. Given the high incidence and severity of tendon and ligament injuries in elite rugby, we studied whether 13 gene polymorphisms previously associated with tendon/ligament injury were associated with elite athlete status. Participants from the RugbyGene project were 663 elite Caucasian male rugby athletes (RA) (mean (standard deviation) height 1.85 (0.07) m, mass 101 (12) kg, age 29 (7) yr), including 558 rugby union athletes (RU) and 105 rugby league athletes. Non-athletes (NA) were 909 Caucasian men and women (56% female; height 1.70 (0.10) m, mass 72 (13) kg, age 41 (23) yr). Genotypes were determined using TaqMan probes and groups compared using Χ2 and odds ratio (OR). COLGALT1 rs8090 AA genotype was more frequent in RA (27%) than NA (23%; P = 0.006). COL3A1 rs1800255 A allele was more frequent in RA (26%) than NA (23%) due to a greater frequency of GA genotype (39% vs 33%). For MIR608 rs4919510, RA had 1.7 times the odds of carrying the CC genotype compared to NA. MMP3 rs591058 TT genotype was less common in RA (25.1%) than NA (31.2%; P < 0.04). For NID1 rs4660148, RA had 1.6 times the odds of carrying the TT genotype compared to NA. It appears that elite rugby athletes have an inherited advantage that contributes to their elite status, possibly via resistance to soft tissue injury. These data may, in future, assist personalised management of injury risk amongst athletes.Highlights The elite rugby athletes we studied had differing genetic characteristics to non-athletes regarding genetic variants previously associated with soft-tissue injury risk.COLGALT1 rs8090, COL3A1 rs1800255, MIR608 rs4919510, MMP3 rs591058 and NID1 rs4660148 were all associated with elite status in rugby.We propose that elite rugby athletes might possess an inherited resistance to soft tissue injury, which has enabled them to achieve elite status despite exposure to the high-risk environment of elite rugby.


Assuntos
Futebol Americano , MicroRNAs , Lesões dos Tecidos Moles , Humanos , Masculino , Feminino , Adulto , Metaloproteinase 3 da Matriz , Rugby , Alelos , Lesões dos Tecidos Moles/genética
6.
Clin J Sport Med ; 33(5): e145-e151, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35350037

RESUMO

OBJECTIVE: Concussions are common match injuries in elite rugby, and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and 8 concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared with nonathletes. DESIGN: A case-control genetic association study. SETTING: Institutional (university). PARTICIPANTS: Elite White male rugby athletes [n = 668, mean (SD) height 1.85 (0.07) m, mass 102 (12) kg, and age 29 (7) years] and 1015 nonathlete White men and women (48% men). INTERVENTIONS: Genotype was the independent variable, obtained by PCR of genomic DNA using TaqMan probes. MAIN OUTCOME MEASURE: Elite athlete status with groups compared using χ 2 and odds ratio (OR). RESULTS: The COMT rs4680 Met/Met (AA) genotype, Met allele possession, and Met allele frequency were lower in rugby athletes (24.8%, 74.6%, and 49.7%, respectively) than nonathletes (30.2%, 77.6%, and 54.0%; P < 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than nonathletes (OR 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. CONCLUSIONS: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk, and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk among athletes.


Assuntos
Concussão Encefálica , Futebol Americano , Humanos , Masculino , Feminino , Adulto , Rugby , Futebol Americano/lesões , Concussão Encefálica/genética , Concussão Encefálica/psicologia , Polimorfismo Genético , Atletas , Catecol O-Metiltransferase/genética
7.
Eur J Sport Sci ; 23(2): 284-293, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821541

RESUMO

Previous small-scale studies have shown an association between the COL5A1 gene and anterior cruciate ligament (ACL) injury risk. In this larger study, the genotype and allele frequency distributions of the COL5A1 rs12722 C/T and rs10628678 AGGG/deletion (AGGG/-) indel variants were compared between participants: (i) with ACL injury in independent and combined cohorts from South-Africa (SA) and Australia (AUS) vs controls (CON), and (ii) with any ligament (ALL) or only ACL injury in a Japanese (JPN) cohort vs CON. Samples were collected from SA (235 cases; 232 controls), AUS (362 cases; 80 controls) and JPN (500 cases; 1,403 controls). Genomic DNA was extracted and genotyped. Distributions were compared, and inferred haplotype analyses performed. No independent associations were noted for rs12722 or rs10628678 when the combined SA + AUS cohort was analysed. However, the C-deletion (rs12722-rs10628678) inferred haplotype was under-represented (p = 0.040, OR = 0.15, CI = 0.04-0.56), while the T-deletion inferred haplotype was over-represented in the female SA + AUS ACL participants versus controls (p < 0.001, OR = 4.74, CI = 1.66-13.55). Additionally, the rs12722 C/C genotype was under-represented in JPN CON vs ACL (p = 0.039, OR = 0.52, 0.27-1.00), while the rs10628678 -/- genotype was associated with increased risk of any ligament injuries (p = 0.035, OR = 1.31, CI = 1.02-1.68) in the JPN cohort. Collectively, these results highlight that a region within the COL5A1 3'-UTR is associated with ligament injury risk. This must be evaluated in larger cohorts and its functional relevance to the structure and capacity of ligaments and joint biomechanics be explored.Highlights The COL5A1 T-deletion inferred haplotype (rs12722-rs10628678) was associated with an increased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 C-deletion inferred haplotype (rs12722-rs10628678) was associated with a decreased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 rs12722 C/C and rs10628678 -/- genotypes were associated with increased risk of ACL rupture and of ligament injuries in JPN, respectively.A region within the COL5A1 3'-UTR is associated with risk of ligament injury, including ACL rupture, and therefore the functional significance of this region on ligament capacity and joint biomechanics requires further exploration.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Feminino , África do Sul , Japão , Colágeno Tipo V/genética , Genótipo , Estudos de Casos e Controles
8.
Eur J Sport Sci ; 23(8): 1779-1788, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36503489

RESUMO

Part 1 of this genetic association series highlighted several genetic variants independently associated with elite status in rugby. However, it is highly likely that the genetic influence on elite status is polygenic due to the interaction of multiple genes. Therefore, the aim of the present study was to investigate whether polygenic profiles of elite rugby athletes differed from non-athletes utilising 13 genetic polymorphisms previously associated with tendon/ligament injury. Total genotype score (TGS) was calculated and multifactor dimensionality reduction (MDR) was used to calculate SNP-SNP epistasis interactions. Based on our elite rugby data from Part 1, mean TGS was significantly higher in elite rugby athletes (52.1 ± 10.7) than non-athletes (48.7 ± 10.8). There were more elite rugby athletes (54%) within the upper TGS quartile, and fewer (46%) within the lower quartile, compared to non-athletes (31% and 69%, respectively; P = 5·10-5), and the TGS was able to distinguish between elite rugby athletes and non-athletes (area under the curve = 0.59; 95% confidence interval 0.55-0.63; P = 9·10-7). Furthermore, MDR identified a three-SNP model of COL5A1 rs12722, COL5A1 rs3196378 and MIR608 rs4919510 that was best able to predict elite athlete status, with a greater frequency of the CC-CC-CC genotype combination in elite rugby athletes (9.8%) than non-athletes (5.3%). We propose that elite rugby athletes possess "preferable" musculoskeletal soft-tissue injury-associated polygenic profiles that have helped them achieve success in the high injury risk environment of rugby. These data may, in future, have implications for the individual management of musculoskeletal soft-tissue injury.HighlightsElite rugby athletes have preferable polygenic profiles to non-athletes in terms of genetic variants previously associated with musculoskeletal soft-tissue injury.The total genotype score was able to distinguish between elite rugby athletes and non-athletes.COL5A1 rs12722, COL5A1 rs3196378 and MIR608 rs4919510 produced the best model for predicting elite athlete status.We propose that elite rugby athletes may have an inherited advantage to achieving elite status due to an increased resistance to soft-tissue injury.


Assuntos
MicroRNAs , Rugby , Humanos , Genótipo , Atletas
9.
Genes (Basel) ; 13(12)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36553626

RESUMO

Joint laxity is a multifactorial phenotype with a heritable component. Mutations or common polymorphisms within the α1(V) (COL5A1), α1(XI) (COL11A1) and α2(XI) (COL11A2) collagen genes have been reported or proposed to associate with joint hypermobility, range of motion and/or genu recurvatum. The aim of this study was to investigate whether polymorphisms within these collagen-encoding genes are associated with measurements of knee joint laxity and computed ligament length changes within the non-dominant leg. One hundred and six healthy participants were assessed for genu recurvatum (knee hyperextension), anterior-posterior tibial translation, external-internal tibial rotation and ligament length changes during knee rotation of their non-dominant leg. Participants were genotyped for COL5A1 rs12722 (T/C), COL11A1 rs3753841 (C/T), COL11A1 rs1676486 (T/C) and COL11A2 rs1799907 (A/T). The genotype-genotype combination of any two or more of the four COL5A1 rs12722 CC, COL11A1 rs3753841 CC, COL11A1 rs1676486 TT and COL11A2 rs1799907 AA genotypes was associated with decreased active and passive knee hyperextension. These genotype-genotype combinations, including sex (male), increased age and decreased body mass collectively, also contributed to decreased passive knee hyperextension. These findings suggest that COL5A1, COL11A1 and COL11A2 gene-gene interactions are associated with knee hyperextension measurements of the non-dominant leg of healthy individuals.


Assuntos
Colágeno , Instabilidade Articular , Articulação do Joelho , Humanos , Masculino , Colágeno/genética , Genótipo , Instabilidade Articular/genética , Articulação do Joelho/fisiopatologia , Polimorfismo Genético
10.
Clin Biomech (Bristol, Avon) ; 100: 105822, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36436321

RESUMO

BACKGROUND: Joint laxity is a multifactorial phenotype with a heritable component. Type I collagen gene (COL1A1) mutations cause connective tissue disorders with joint hypermobility as a clinical feature, while variants within COL1A1 and type III collagen gene (COL3A1) are associated with musculoskeletal injuries. The aim of this study was to investigate whether COL1A1 and COL3A1 variants are associated with measurements of non-dominant knee joint laxity and computed ligament length changes. METHODS: 106 moderately active uninjured participants were assessed for genu recurvatum, anterior-posterior tibial translation, external-internal tibial rotation and calculated ligament length changes during knee rotation. Participants were genotyped for COL1A1 rs1107946, rs1800012 and COL3A1 rs1800255. FINDINGS: The COL1A1 rs1107946 GG genotype had significantly larger external rotation [GG: 5.7° (4.9°;6.4°) vs GT: 4.6° (4.2°;5.5°), adjusted P = 0.014], internal rotation [GG: 5.9° (5.3°;6.6°) vs GT: 5.4° (4.7°;6.2°), adjusted P = 0.014], and slack [GG: 18.2° ± 3.2° vs GT: 16.1° ± 3.1°, adjusted P = 0.014]. The GG genotype at both COL1A1 variants had significantly larger active displacement [GG + GG: 6.0 mm (3.8 mm;8.0 mm) vs other genotype combinations: 4.0 mm (2.5 mm;6.0 mm), P < 0.001] and maximum displacement [GG + GG: 8.0 mm (6.9 mm;10.6 mm) vs other genotype combinations: 6.0 mm (5.0 mm;9.0 mm), P = 0.003]. COL1A1 rs1107946 significantly contributed to increased external and internal rotation in multilinear regression models, while both COL1A1 variants, significantly contributed to increased active displacement and slack. Larger medial and lateral cruciate ligament length changes were reported in participants with GG genotypes at both COL1A1 variants. INTERPRETATION: These findings suggest that the COL1A1 variants are associated with knee rotational laxity and changes in ligament length.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III , Instabilidade Articular , Ligamentos Articulares , Humanos , Colágeno Tipo III/genética , Instabilidade Articular/genética , Instabilidade Articular/patologia , Cadeia alfa 1 do Colágeno Tipo I/genética , Ligamentos Articulares/patologia , Variação Genética
11.
PLoS One ; 17(10): e0274354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201451

RESUMO

Predisposition to anterior cruciate ligament (ACL) rupture is multi-factorial, with variation in the genome considered a key intrinsic risk factor. Most implicated loci have been identified from candidate gene-based approach using case-control association settings. Here, we leverage a hypothesis-free whole genome sequencing in two two unrelated families (Family A and B) each with twins with a history of recurrent ACL ruptures acquired playing rugby as their primary sport, aimed to elucidate biologically relevant function-altering variants and genetic modifiers in ACL rupture. Family A monozygotic twin males (Twin 1 and Twin 2) both sustained two unilateral non-contact ACL ruptures of the right limb while playing club level touch rugby. Their male sibling sustained a bilateral non-contact ACL rupture while playing rugby union was also recruited. The father had sustained a unilateral non-contact ACL rupture on the right limb while playing professional amateur level football and mother who had participated in dancing for over 10 years at a social level, with no previous ligament or tendon injuries were both recruited. Family B monozygotic twin males (Twin 3 and Twin 4) were recruited with Twin 3 who had sustained a unilateral non-contact ACL rupture of the right limb and Twin 4 sustained three non-contact ACL ruptures (two in right limb and one in left limb), both while playing provincial level rugby union. Their female sibling participated in karate and swimming activities; and mother in hockey (4 years) horse riding (15 years) and swimming, had both reported no previous history of ligament or tendon injury. Variants with potential deleterious, loss-of-function and pathogenic effects were prioritised. Identity by descent, molecular dynamic simulation and functional partner analyses were conducted. We identified, in all nine affected individuals, including twin sets, non-synonymous SNPs in three genes: COL12A1 and CATSPER2, and KCNJ12 that are commonly enriched for deleterious, loss-of-function mutations, and their dysfunctions are known to be involved in the development of chronic pain, and represent key therapeutic targets. Notably, using Identity By Decent (IBD) analyses a long shared identical sequence interval which included the LINC01250 gene, around the telomeric region of chromosome 2p25.3, was common between affected twins in both families, and an affected brother'. Overall gene sets were enriched in pathways relevant to ACL pathophysiology, including complement/coagulation cascades (p = 3.0e-7), purine metabolism (p = 6.0e-7) and mismatch repair (p = 6.9e-5) pathways. Highlighted, is that this study fills an important gap in knowledge by using a WGS approach, focusing on potential deleterious variants in two unrelated families with a historical record of ACL rupture; and providing new insights into the pathophysiology of ACL, by identifying gene sets that contribute to variability in ACL risk.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos dos Tendões , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/genética , Lesões do Ligamento Cruzado Anterior/patologia , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Purinas , Ruptura/patologia , Traumatismos dos Tendões/patologia , Sequenciamento Completo do Genoma
12.
Genes (Basel) ; 13(5)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35627205

RESUMO

Due to the high-velocity collision-based nature of elite rugby league and union, the risk of sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably affected by the interaction of multiple genes in a polygenic manner. This study investigated whether suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS) using eight concussion-associated polymorphisms would be higher in elite rugby athletes than non-athletes, indicating selection for protection against incurring or suffering prolonged effects of, concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated, elite rugby athletes do not have a more 'preferable' concussion-associated polygenic profile than non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration vis-à-vis sport-related concussion injury data and could have implications for the management of inter-individual differences in concussion risk.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Herança Multifatorial , Rugby , Atletas , Traumatismos em Atletas/genética , Concussão Encefálica/genética , Humanos , Masculino , Rugby/lesões
13.
Life (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629331

RESUMO

A significant proportion of patients requiring musculoskeletal management present with tendon and ligament pathology. Our understanding of the intrinsic and extrinsic mechanisms that lead to such disabilities is increasing. However, the complexity underpinning these interactive multifactorial elements is still not fully characterised. Evidence highlighting the genetic components, either reducing or increasing susceptibility to injury, is increasing. This review examines the present understanding of the role genetic variations contribute to tendon and ligament injury risk. It examines the different elements of tendon and ligament structure and considers our knowledge of genetic influence on form, function, ability to withstand load, and undertake repair or regeneration. The role of epigenetic factors in modifying gene expression in these structures is also explored. It considers the challenges to interpreting present knowledge, the requirements, and likely pathways for future research, and whether such information has reached the point of clinical utility.

14.
J Orthop Res ; 40(7): 1604-1612, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34664319

RESUMO

Polymorphisms in VEGFA and KDR encoding proteins have been associated with anterior cruciate ligament (ACL) injury risk. We leveraged a collective sample from Sweden, Poland, and Australia to investigate the association of functional polymorphisms in VEGFA and KDR with susceptibility to ACL injury risk. Using a case-control genetic association approach, polymorphisms in VEGFA and KDR were genotyped and haplotypes inferred from 765 controls, and 912 cases clinically diagnosed with ACL rupture. For VEGFA, there was a significant overrepresentation of the rs2010963 CC genotype (p = 0.0001, false discovery rate [FDR]: p = 0.001, odds ratio [OR]: 2.16, 95% confidence interval [CI]: 1.47-3.19) in the combined ACL group (18%) compared to the combined control group (11%). The VEGFA (rs699947 C/A, rs1570360 G/A, rs2010963 G/C) A-A-G haplotype was significantly (p = 0.010, OR: 0.85, 95% CI: 0.69-1.05) underrepresented in the combined ACL group (23%) compared to the combined control group (28%). In addition, the A-G-G construct was significantly (p = 0.036, OR: 0.81, 95% CI: 0.64-1.02) underrepresented in the combined ACL group (12%) compared to the combined CON group (16%). Our findings support the association of the VEGFA rs2010963 CC genotype with increased risk and (ii) the VEGFA A-A-G haplotype with a reduced risk, and are in alignment with the a priori hypothesis. Collectively identifying a genetic interval within VEGFA to be implicated in ACL risk modulation and highlight further the importance of vascular regulation in ligament biology.


Assuntos
Lesões do Ligamento Cruzado Anterior , Fator A de Crescimento do Endotélio Vascular , Lesões do Ligamento Cruzado Anterior/genética , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Fator A de Crescimento do Endotélio Vascular/genética
15.
Eur J Sport Sci ; 22(4): 650-657, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33522443

RESUMO

The aim of this study was to explore the interactions between the interleukins and the angiogenesis signalling pathway, following a pathway-based approach. Statistical modelling tools were used to develop a preliminary polygenic risk assessment model for anterior cruciate ligament (ACL) ruptures, incorporating the angiogenesis signalling genes (VEGFA and KDR) and interleukins (IL1B, IL6, IL6R) which also function to regulate angiogenesis. Multivariate logistic regression analysis was used to identify the most informative contributors to ACL rupture risk from a range of eleven potential intrinsic risk factors: age, sex, BMI and eight genetic polymorphisms within five genes, namely, IL1B rs16944 C/T, IL6 rs1800795 G/C, IL6R rs2228145 C/A, VEGFA rs699947 C/A, VEGFA rs1570360 G/A, VEGFA rs2010963 C/G, KDR rs2071559 A/G and KDR rs1870377 T/A. A total of 232 asymptomatic controls (CON) and 234 participants with surgically diagnosed ACL ruptures, of which 135 participants reported a non-contact mechanism of injury (NON subgroup), were previously genotyped for the selected polymorphisms. The polygenic risk model identified the VEGFA rs699947 CC genotype (p = 0.024, odds ratio (OR): 3.35, 95% confidence interval (CI): 1.17-9.62), VEGFA rs2010963 GC genotype (p = 0.049, OR: 2.43, 95% CI: 1.00-5.87), age (p = 0.011, OR: 0.97, 95% CI: 0.95-0.99) and BMI (p = 0.009, OR:1.09, 95% CI: 0.57-2.11) as the most significant predictors of ACL rupture risk from the data included. The results of this study highlight VEGFA, age and BMI as biologically significant components of this network requiring further investigation in the context of musculoskeletal soft tissue injury risk.HighlightsThe findings of this study highlight the VEGFA gene, age and BMI as biologically significant contributors to ACL rupture susceptibility.Upon further validation of these risk factors, they may be included in genetic risk assessment tools to design pre-habilitation strategies, prescribe appropriate treatment strategies after injury or to assess how an individual is likely to respond to load.Polygenic risk models aid in highlighting the components of the complex ECM remodelling pathway requiring further investigation, using a multidisciplinary approach.VEGFA is a key angiogenic protein contributing to ECM homeostasis and may therefore have potential therapeutic implications that need to be explored.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/genética , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Humanos , Fatores de Risco
16.
Int J Sports Physiol Perform ; 16(12): 1858-1864, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34088882

RESUMO

PURPOSE: Genetic polymorphisms have been associated with the adaptation to training in maximal oxygen uptake (V˙O2max). However, the genotype distribution of selected polymorphisms in athletic cohorts is unknown, with their influence on performance characteristics also undetermined. This study investigated whether the genotype distributions of 3 polymorphisms previously associated with V˙O2max training adaptation are associated with elite athlete status and performance characteristics in runners and rugby athletes, competitors for whom aerobic metabolism is important. METHODS: Genomic DNA was collected from 732 men including 165 long-distance runners, 212 elite rugby union athletes, and 355 nonathletes. Genotype and allele frequencies of PRDM1 rs10499043 C/T, GRIN3A rs1535628 G/A, and KCNH8 rs4973706 T/C were compared between athletes and nonathletes. Personal-best marathon times in runners, as well as in-game performance variables and playing position, of rugby athletes were analyzed according to genotype. RESULTS: Runners with PRDM1 T alleles recorded marathon times ∼3 minutes faster than CC homozygotes (02:27:55 [00:07:32] h vs 02:31:03 [00:08:24] h, P = .023). Rugby athletes had 1.57 times greater odds of possessing the KCNH8 TT genotype than nonathletes (65.5% vs 54.7%, χ2 = 6.494, P = .013). No other associations were identified. CONCLUSIONS: This study is the first to demonstrate that polymorphisms previously associated with V˙O2max training adaptations in nonathletes are also associated with marathon performance (PRDM1) and elite rugby union status (KCNH8). The genotypes and alleles previously associated with superior endurance-training adaptation appear to be advantageous in long-distance running and achieving elite status in rugby union.


Assuntos
Desempenho Atlético , Corrida , Atletas , Humanos , Masculino , Corrida de Maratona , Consumo de Oxigênio/genética , Polimorfismo Genético , Rugby
17.
Sports Med Open ; 6(1): 33, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32748169

RESUMO

BACKGROUND: Several clinical tests exist to assess knee laxity. Although these assessments are the predominant tools of diagnosis, they are subjective and rely on the experience of the clinician. The robotic knee testing (RKT) device has been developed to quantitatively and objectively measure rotational knee laxity. The purpose of this study was primarily to determine the intra-tester reliability of rotational knee laxity and slack, the amount of rotation occurring between the two turning points of the load deformation curve, measured by the RKT device and investigate the differences between female and male measurements. METHODS: Ninety-one healthy and moderately active volunteers took part in the study, of which twenty-five participated in the reliability study. Tibial rotation was performed using a servomotor to a torque of 6 N m, while measurements of motion in all 6° of freedom were collected. Reliability measurements were collected over 5 days at similar times of the day. Intra-class correlation coefficient (ICC) values and standard error of measurement (SEM) were determined across the load deformation curves. Linear mixed effects modelling was used to further assess the reliability of the measurement of external and internal tibial rotation using features of the curve (internal/external rotational laxity and slack). Measurements of internal/external rotational laxity and slack were compared between the sexes using the Student t test. RESULTS: Pointwise axial rotation measurements of the tibia had good reliability [ICC (2,1) 0.83-0.89], while reliability of the secondary motions ranged between poor and good [ICC (2,1) 0.31-0.89]. All SEMs were less than 0.3°. Most of the variation of the curve features were accounted for by inter-subject differences (56.2-77.8%) and showed moderate to good reliability. Comparison of the right legs of the sexes revealed that females had significantly larger amounts of internal rotation laxity (females 6.1 ± 1.3° vs males 5.6 ± 0.9°, p = 0.037), external rotation laxity (females 6.0 ± 1.6° vs males 5.0 ± 1.2°, p = 0.002) and slack (females 19.2 ± 4.2° vs males 16.6 ± 2.9°, p = 0.003). Similar results were seen within the left legs. CONCLUSIONS: Overall, the RKT is a reliable and precise tool to assess the rotational laxity of the knee joint in healthy individuals. Finally, greater amounts of laxity and slack were also reported for females.

18.
J Orthop Res ; 38(10): 2290-2298, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017203

RESUMO

Studies have reported the association of the COL1A1 Sp1 binding site variant (rs1800012) with the risk of acute musculoskeletal soft tissue injuries. Interaction with the COL1A1 promoter variant (rs1107946) has also been proposed to modulate acute injury risk. Conversely, neither of these loci have been associated with chronic musculoskeletal soft tissue phenotypes. Therefore, the primary aim of this study involved characterizing these variants in a cohort of participants with chronic Achilles tendinopathy. Second, this study aimed to support the contribution of the rs1107946 and rs1800012 variants to the profile predisposing for acute musculoskeletal soft tissue injuries including Achilles tendon and anterior cruciate ligament (ACL) ruptures. A hypothesis-driven association study was conducted. In total, 295 control participants, 210 participants with clinically diagnosed Achilles tendinopathy, and 72 participants with Achilles tendon ruptures recruited independently from South Africa and the United Kingdom were genotyped for the prioritized variants. In addition, a cohort including 232 control participants and 234 participants with surgically diagnosed ACL ruptures was also analyzed. Although no associations were observed in the recruited cohorts, the rare rs1800012 TT genotype was associated with decreased ACL injury risk when the results from the current study were combined with that from previously published studies (P = .040, OR: 2.8, 95% CI: 1.0-11.0). In addition, the G-T (rs1107946-rs1800012) inferred haplotype was associated with decreased risk for Achilles tendon ruptures. These results support previous observations and reiterate the heterogeneity of musculoskeletal phenlotypes whereby certain markers may be common to the predisposing profiles while others may be unique.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Colágeno Tipo I/genética , Tendinopatia/genética , Tendão do Calcâneo/lesões , Adulto , Estudos de Casos e Controles , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Sci Med Sport ; 23(8): 695-700, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32061523

RESUMO

OBJECTIVES: To investigate the functional effect of implicated variants within BGN and COL5A1 on gene expression of components of the extracellular matrix (ECM) in a TGF-ß-stimulated risk model for musculoskeletal soft tissue injuries. DESIGN: Experimental research, laboratory study. METHODS: Skin biopsies were obtained from nine healthy participants with either a combined increased or reduced risk profile for COL5A1 rs12722 C>T and BGN rs1126499 C>T - rs1042103 G>A, and primary fibroblast cell lines were established. Total RNA was extracted at baseline (10% FBS), after serum starvation (1% FBS) and TGF-ß1 treatment (1% FBS, 10ng/mL TGF-1ß). Relative mRNA levels of BGN, COL5A1, DCN and VEGFA was quantified using Taqman® array pre-spotted plate assays (Applied Biosystems, Foster city, CA, USA). RESULTS: At baseline, the reduced risk group had 2.5, 1.9 and 2 fold increases (p<0.001) in relative BGN, COL5A1 and VEGFA mRNA levels respectively. In the serum starved experiments, except for a significant 1.5 fold (p=0.017) increase in relative DCN mRNA expression in the reduced risk group, similar observations were noted for the other three genes. After TGF-1ß treatment, the reduced risk group had 1.3 (p=0.011) and 1.4 fold (p=0.001) increases in the relative COL5A1 and VEGFA mRNA levels, respectively. CONCLUSIONS: Altered mRNA levels associated with genetic risk profiles for musculoskeletal soft injury risk at baseline (BGN, COL5A1 and VEGFA), with serum starvation (DCN) and after TGF-ß1 treatment (COL5A1 and VEGFA) provide additional functional evidence to support the association of implicated genetic loci with several musculoskeletal soft tissue injuries. Implication of altered gene expression profiles underpinning these genetic risk associated loci potentially highlight key therapeutic targets for management of these injuries.


Assuntos
Biglicano/genética , Colágeno Tipo V/genética , Proteoglicanas/genética , Lesões dos Tecidos Moles/genética , Fator de Crescimento Transformador beta1/farmacologia , Linhagem Celular , Feminino , Expressão Gênica , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Fatores de Risco , Fator A de Crescimento do Endotélio Vascular/genética
20.
J Orthop Res ; 38(8): 1856-1865, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31922278

RESUMO

Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-ß (TGF-ß) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON). Whole-exome sequencing data were used to prioritize variants of potential functional relevance. Genotyping for COL5A1 (rs3922912 G>A, rs4841926 C>T, and rs3124299 C>T), TGFBR3 (rs1805113 G>A and rs1805117 T>C), and TGFBI (rs1442 G>C) was performed using Taqman SNP genotyping assays. Significant overrepresentation of the G allele of TGFBR3 rs1805113 was observed in CON vs ACL (P = .014) and NON groups (P = .021). Similar results were obtained in a female with the G allele (CON vs ACL: P = .029; CON vs NON: P = .016). The TGFBI rs1442 CC genotype was overrepresented in the female ACL vs CON (P = .013). Associations of inferred allele combinations were observed in line with the above results. COL5A1 intron 4-exon 5 genomic interval was not associated with the risk of ACL ruptures. Instead, this novel study is the first to use this approach to identify variants within the TGF-ß signaling pathway to be implicated in the risk of ACL ruptures. A genetic susceptibility interval was identified to be explored in the context of extracellular matrix remodeling.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Colágeno Tipo V/genética , Proteínas da Matriz Extracelular/genética , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Adolescente , Adulto , Feminino , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...